Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.015
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612559

RESUMO

The cornea is an avascular, transparent tissue that allows light to enter the visual system. Accurate vision requires proper maintenance of the cornea's integrity and structure. Due to its exposure to the external environment, the cornea is prone to injury and must undergo proper wound healing to restore vision. Aquaporins (AQPs) are a family of water channels important for passive water transport and, in some family members, the transport of other small molecules; AQPs are expressed in all layers of the cornea. Although their functions as water channels are well established, the direct function of AQPs in the cornea is still being determined and is the focus of this review. AQPs, primarily AQP1, AQP3, and AQP5, have been found to play an important role in maintaining water homeostasis, the corneal structure in relation to proper hydration, and stress responses, as well as wound healing in all layers of the cornea. Due to their many functions in the cornea, the identification of drug targets that modulate the expression of AQPs in the cornea could be beneficial to promote corneal wound healing and restore proper function of this tissue crucial for vision.


Assuntos
Aquaporinas , Lesões da Córnea , Humanos , Córnea , Aquaporinas/genética , Transporte Biológico , Água
2.
BMC Plant Biol ; 24(1): 298, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632542

RESUMO

BACKGROUND: Tonoplast intrinsic proteins (TIPs), which typically mediate water transport across vacuolar membranes, play an essential role in plant growth, development, and stress responses. However, their characterization in tigernut (Cyperus esculentus L.), an oil-bearing tuber plant of the Cyperaceae family, is still in the infancy. RESULTS: In this study, a first genome-wide characterization of the TIP subfamily was conducted in tigernut, resulting in ten members representing five previously defined phylogenetic groups, i.e., TIP1-5. Although the gene amounts are equal to that present in two model plants Arabidopsis and rice, the group composition and/or evolution pattern were shown to be different. Except for CeTIP1;3 that has no counterpart in both Arabidopsis and rice, complex orthologous relationships of 1:1, 1:2, 1:3, 2:1, and 2:2 were observed. Expansion of the CeTIP subfamily was contributed by whole-genome duplication (WGD), transposed, and dispersed duplications. In contrast to the recent WGD-derivation of CeTIP3;1/-3;2, synteny analyses indicated that TIP4 and - 5 are old WGD repeats of TIP2, appearing sometime before monocot-eudicot divergence. Expression analysis revealed that CeTIP genes exhibit diverse expression profiles and are subjected to developmental and diurnal fluctuation regulation. Moreover, when transiently overexpressed in tobacco leaves, CeTIP1;1 was shown to locate in the vacuolar membrane and function in homo/heteromultimer, whereas CeTIP2;1 is located in the cell membrane and only function in heteromultimer. Interestingly, CeTIP1;1 could mediate the tonoplast-localization of CeTIP2;1 via protein interaction, implying complex regulatory patterns. CONCLUSIONS: Our findings provide a global view of CeTIP genes, which provide valuable information for further functional analysis and genetic improvement through manipulating key members in tigernut.


Assuntos
Aquaporinas , Arabidopsis , Cyperus , Cyperus/genética , Arabidopsis/genética , Filogenia , Genoma , Plantas/genética , Aquaporinas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
3.
BMC Plant Biol ; 24(1): 305, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644479

RESUMO

BACKGROUND: Aquaporins (AQPs) facilitate water diffusion across biological membranes and are involved in all phases of growth and development. Small and basic intrinsic proteins (SIPs) belong to the fourth subfamily of the plant AQPs. Although SIPs are widely present in higher plants, reports on SIPs are limited. Rice is one of the major food crops in the world, and water use is an important factor affecting rice growth and development; therefore, this study aimed to provide information relevant to the function and environmental response of the rice SIP gene family. RESULTS: The rice (Oryza sativa L. japonica) genome encodes two SIP-like genes, OsSIP1 and OsSIP2, whose products are predominantly located in the endoplasmic reticulum (ER) membrane but transient localization to the plasma membrane is not excluded. Heterologous expression in a yeast aquaglyceroporin-mutant fps1Δ showed that both OsSIP1 and OsSIP2 made the cell more sensitive to KCl, sorbitol and H2O2, indicating facilitated permeation of water and hydrogen peroxide. In addition, the yeast cells expressing OsSIP2 were unable to efflux the toxic methylamine taken up by the endogenous MEP permeases, but OsSIP1 showed subtle permeability to methylamine, suggesting that OsSIP1 may have a wider conducting pore than OsSIP2. Expression profiling in different rice tissues or organs revealed that OsSIP1 was expressed in all tissues tested, whereas OsSIP2 was preferentially expressed in anthers and weakly expressed in other tissues. Consistent with this, histochemical staining of tissues expressing the promoter-ß-glucuronidase fusion genes revealed their tissue-specific expression profile. In rice seedlings, both OsSIPs were upregulated to varied levels under different stress conditions, including osmotic shock, high salinity, unfavorable temperature, redox challenge and pathogen attack, as well as by hormonal treatments such as GA, ABA, MeJA, SA. However, a reduced expression of both OsSIPs was observed under dehydration treatment. CONCLUSIONS: Our results suggest that SIP-like aquaporins are not restricted to the ER membrane and are likely to be involved in unique membrane functions in substrate transport, growth and development, and environmental response.


Assuntos
Aquaporinas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Retículo Endoplasmático/metabolismo
4.
Biosci Rep ; 44(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38451099

RESUMO

In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.


Assuntos
Aquaporinas , Astrócitos , Proteínas do Olho , Neurônios , Neuroproteção , Estresse Oxidativo , Humanos , Aquaporinas/genética , Aquaporinas/metabolismo , Astrócitos/metabolismo , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Lipopolissacarídeos/farmacologia , Neurônios/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo
5.
Plant Sci ; 342: 112036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365002

RESUMO

Drought stress often affects crop growth and even causes crop death, while aquaporins can maintain osmotic balance by transporting water across membranes, so it is important to study how to improve drought tolerance of crops by using aquaporins. In this work, we characterize a set of subfamily members named NIPs belonging to the family of aquaporins in Lotus japonicus, grouping 14 family members based on the sequence similarity in the aromatic/arginine (Ar/R) region. Among these members, LjNIP1;5 is one of the genes with the highest expression in roots which is induced by the AM fungus. In Lotus japonicus, LjNIP1;5 is highly expressed in symbiotic roots, and its promoter can be induced by drought stress and AM fungus. Root colonization analysis reveals that ljnip1:5 mutant exhibits lower mycorrhizal colonization than the wild type, with increasing the proportion of large arbuscule, and fewer arbuscule produced by symbiosis under drought stress. In the LjNIP1;5OE plant, we detected a strong antioxidant capacity compared to the control, and LjNIP1;5OE showed higher stem length under drought stress. Taken together, the current results facilitate our comprehensive understanding of the plant adaptive to drought stress with the coordination of the specific fungi.


Assuntos
Aquaporinas , Lotus , Micorrizas , Simbiose/genética , Lotus/genética , Lotus/metabolismo , Resistência à Seca , Aquaporinas/genética , Aquaporinas/metabolismo , Raízes de Plantas/metabolismo
6.
Physiol Plant ; 176(1): e14222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380715

RESUMO

Salinity and excess zinc are two main problems that have limited agriculture in recent years. Aquaporins are crucial in regulating the passage of water and solutes through cells and may be essential for mitigating abiotic stresses. In the present study, the adaptive response to moderate salinity (60 mM NaCl) and excess Zn (1 mM ZnSO4 ) were compared alone and in combination in Cucumis sativus L. and Solanum lycopersicum L. Water relations, gas exchange and the differential expression of all aquaporins were analysed. The results showed that cucumber plants under salinity maintained the internal movement of water through osmotic adjustment and the overexpression of specific PIPs aquaporins, following a "conservation strategy". As tomato has a high tolerance to salinity, the physiological parameters and the expression of most aquaporins remained unchanged. ZnSO4 was shown to be stressful for both plant species. While cucumber upregulated 7 aquaporin isoforms, the expression of aquaporins increased in a generalized manner in tomato. Despite the differences, water relations and transpiration were adjusted in both plants, allowing the RWC in the shoot to be maintained. The aquaporin regulation in cucumber plants facing NaCl+ZnSO4 stress was similar in the two treatments containing NaCl, evidencing the predominance of salt in stress. However, in tomato, the induced expression of specific isoforms to deal with the combined stress differed from independent stresses. The results clarify the key role of aquaporin regulation in facing abiotic stresses and their possible use as markers of tolerance to salinity and heavy metals in plants.


Assuntos
Aquaporinas , Cucumis sativus , Solanum lycopersicum , Aquaporinas/genética , Aquaporinas/metabolismo , Cucumis sativus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Salinidade , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Solanum lycopersicum/genética , Estresse Fisiológico , Água/metabolismo , Zinco/metabolismo , Sulfato de Zinco/química , Sulfato de Zinco/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338680

RESUMO

Sepsis is a common life-threatening disease caused by dysregulated immune response and metabolic acidosis which lead to organ failure. An abnormal expression of aquaporins plays an important role in organ failure. Additionally, genetic variants in aquaporins impact on the outcome in sepsis. Thus, we investigated the polymorphism (rs17553719) and expression of aquaporin-3 (AQP3) and correlated these measurements with the survival of sepsis patients. Accordingly, we collected blood samples on several days (plus clinical data) from 265 sepsis patients who stayed in different ICUs in Germany. Serum plasma, DNA, and RNA were then separated to detect the promotor genotypes of AQP3 mRNA expression of AQP3 and several cytokines. The results showed that the homozygote CC genotype exhibited a significant decrease in 30-day survival (38.9%) compared to the CT (66.15%) and TT genotypes (76.3%) (p = 0.003). Moreover, AQP3 mRNA expression was significantly higher and nearly doubled in the CC compared to the CT (p = 0.0044) and TT genotypes (p = 0.018) on the day of study inclusion. This was accompanied by an increased IL-33 concentration in the CC genotype (day 0: p = 0.0026 and day 3: p = 0.008). In summary, the C allele of the AQP3 polymorphism (rs17553719) shows an association with increased AQP3 expression and IL-33 concentration accompanied by decreased survival in patients with sepsis.


Assuntos
Aquaporinas , Sepse , Humanos , Aquaporina 3/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Genótipo , Interleucina-33/genética , Interleucina-33/metabolismo , RNA Mensageiro/metabolismo , Sepse/genética , Sepse/metabolismo
8.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279209

RESUMO

Sepsis involves an immunological systemic response to a microbial pathogenic insult, leading to a cascade of interconnected biochemical, cellular, and organ-organ interaction networks. Potential drug targets can depict aquaporins, as they are involved in immunological processes. In immune cells, AQP3 and AQP9 are of special interest. In this study, we tested the hypothesis that these aquaporins are expressed in the blood cells of septic patients and impact sepsis survival. Clinical data, routine laboratory parameters, and blood samples from septic patients were analyzed on day 1 and day 8 after sepsis diagnosis. AQP expression and cytokine serum concentrations were measured. AQP3 mRNA expression increased over the duration of sepsis and was correlated with lymphocyte count. High AQP3 expression was associated with increased survival. In contrast, AQP9 expression was not altered during sepsis and was correlated with neutrophil count, and low levels of AQP9 were associated with increased survival. Furthermore, AQP9 expression was an independent risk factor for sepsis lethality. In conclusion, AQP3 and AQP9 may play contrary roles in the pathophysiology of sepsis, and these results suggest that AQP9 may be a novel drug target in sepsis and, concurrently, a valuable biomarker of the disease.


Assuntos
Aquaporinas , Sepse , Humanos , Aquaporina 3/genética , Aquaporina 3/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Sepse/genética
9.
Plant J ; 117(1): 264-279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844131

RESUMO

Soil water uptake by roots is a key component of plant water homeostasis contributing to plant growth and survival under ever-changing environmental conditions. The water transport capacity of roots (root hydraulic conductivity; Lpr ) is mostly contributed by finely regulated Plasma membrane Intrinsic Protein (PIP) aquaporins. In this study, we used natural variation of Arabidopsis for the identification of quantitative trait loci (QTLs) contributing to Lpr . Using recombinant lines from a biparental cross (Cvi-0 x Col-0), we show that the gene encoding class 2 Sucrose-Non-Fermenting Protein kinase 2.4 (SnRK2.4) in Col-0 contributes to >30% of Lpr by enhancing aquaporin-dependent water transport. At variance with the inactive and possibly unstable Cvi-0 SnRK2.4 form, the Col-0 form interacts with and phosphorylates the prototypal PIP2;1 aquaporin at Ser121 and stimulates its water transport activity upon coexpression in Xenopus oocytes and yeast cells. Activation of PIP2;1 by Col-0 SnRK2.4 in yeast also requires its protein kinase activity and can be counteracted by clade A Protein Phosphatases 2C. SnRK2.4 shows all hallmarks to be part of core abscisic acid (ABA) signaling modules. Yet, long-term (>3 h) inhibition of Lpr by ABA possibly involves a SnRK2.4-independent inhibition of PIP2;1. SnRK2.4 also promotes stomatal aperture and ABA-induced inhibition of primary root growth. The study identifies a key component of Lpr and sheds new light on the functional overlap and specificity of SnRK2.4 with respect to other ABA-dependent or independent SnRK2s.


Assuntos
Aquaporinas , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Fosforilação , Aquaporinas/genética , Aquaporinas/metabolismo , Água/metabolismo
10.
Genome Biol Evol ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039384

RESUMO

Aquaporin (Aqp) 10 is a member of the aquaglyceroporin subfamily of water channels, and human Aqp10 is permeable to solutes such as glycerol, urea, and boric acid. Tetrapods have a single aqp10 gene, whereas ray-finned fishes have paralogs of this gene through tandem duplication, whole-genome duplication, and subsequent deletion. A previous study on Aqps in the Japanese pufferfish Takifugu rubripes showed that one pufferfish paralog, Aqp10.2b, was permeable to water and glycerol, but not to urea and boric acid. To understand the functional differences of Aqp10s between humans and pufferfish from an evolutionary perspective, we analyzed Aqp10s from an amphibian (Xenopus laevis) and a lobe-finned fish (Protopterus annectens) and Aqp10.1 and Aqp10.2 from several ray-finned fishes (Polypterus senegalus, Lepisosteus oculatus, Danio rerio, and Clupea pallasii). The expression of tetrapod and lobe-finned fish Aqp10s and Aqp10.1-derived Aqps in ray-finned fishes in Xenopus oocytes increased the membrane permeabilities to water, glycerol, urea, and boric acid. In contrast, Aqp10.2-derived Aqps in ray-finned fishes increased water and glycerol permeabilities, whereas those of urea and boric acid were much weaker than those of Aqp10.1-derived Aqps. These results indicate that water, glycerol, urea, and boric acid permeabilities are plesiomorphic activities of Aqp10s and that the ray-finned fish-specific Aqp10.2 paralogs have secondarily reduced or lost urea and boric acid permeability.


Assuntos
Aquaporinas , Glicerol , Animais , Humanos , Filogenia , Peixes/genética , Aquaporinas/genética , Ureia , Água/metabolismo
11.
Plant Cell Environ ; 47(2): 527-539, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37946673

RESUMO

Plant aquaporins (AQPs) facilitate the membrane diffusion of water and small solutes, including hydrogen peroxide (H2 O2 ) and, possibly, cations, essential signalling molecules in many physiological processes. While the determination of the channel activity generally depends on heterologous expression of AQPs in Xenopus oocytes or yeast cells, we established a genetic tool to determine whether they facilitate the diffusion of H2 O2 through the plasma membrane in living plant cells. We designed genetic constructs to co-express the fluorescent H2 O2 sensor HyPer and AQPs, with expression controlled by a heat shock-inducible promoter in Nicotiana tabacum BY-2 suspension cells. After induction of ZmPIP2;5 AQP expression, a HyPer signal was recorded when the cells were incubated with H2 O2 , suggesting that ZmPIP2;5 facilitates H2 O2 transmembrane diffusion; in contrast, the ZmPIP2;5W85A mutated protein was inactive as a water or H2 O2 channel. ZmPIP2;1, ZmPIP2;4 and AtPIP2;1 also facilitated H2 O2 diffusion. Incubation with abscisic acid and the elicitor flg22 peptide induced the intracellular H2 O2 accumulation in BY-2 cells expressing ZmPIP2;5. We also monitored cation channel activity of ZmPIP2;5 using a novel fluorescent photo-switchable Li+ sensor in BY-2 cells. BY-2 suspension cells engineered for inducible expression of AQPs as well as HyPer expression and the use of Li+ sensors constitute a powerful toolkit for evaluating the transport activity and the molecular determinants of PIPs in living plant cells.


Assuntos
Aquaporinas , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Membrana Celular/metabolismo , Cátions/metabolismo , Água/metabolismo
12.
Plant Cell Physiol ; 65(2): 243-258, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37955399

RESUMO

Carbonic anhydrase (CA) catalyzes the reversible CO2 hydration reaction that produces bicarbonate for phosphoenolpyruvate carboxylase (PEPC). This is the initial step for transmitting the CO2 signal in C4 photosynthesis. However, it remains unknown whether the maize (Zea mays L.) CA gene, ZmCA4, plays a role in the maize photosynthesis process. In our study, we found that ZmCA4 was relatively highly expressed in leaves and localized in the chloroplast and the plasma membrane of mesophyll protoplasts. Knock-out of ZmCA4 reduced CA activity, while overexpression of ZmCA4 increased rubisco activity, as well as the quantum yield and relative electron transport rate in photosystem II. Overexpression of ZmCA4 enhanced maize yield-related traits. Moreover, ZmCA4 interacted with aquaporin ZmPIP2;6 in bimolecular fluorescence complementation and co-immunoprecipitation experiments. The double-knock-out mutant for ZmPIP2;6 and ZmCA4 genes showed reductions in its growth, CA and PEPC activities, assimilation rate and photosystem activity. RNA-Seq analysis revealed that the expression of other ZmCAs, ZmPIPs, as well as CO2 signaling pathway homologous genes, and photosynthetic-related genes was all altered in the double-knock-out mutant compared with the wild type. Altogether, our study's findings point to a critical role of ZmCA4 in determining photosynthetic capacity and modulating CO2 signaling regulation via its interaction with ZmPIP2;6, thus providing insight into the potential genetic value of ZmCA4 for maize yield improvement.


Assuntos
Aquaporinas , Anidrases Carbônicas , Zea mays/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Fotossíntese/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Transdução de Sinais/genética , Expressão Gênica
13.
Plant Cell Environ ; 47(3): 832-853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37984066

RESUMO

Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.


Assuntos
Aquaporinas , Avicennia , Avicennia/metabolismo , Ecossistema , Água/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo
14.
Biochem J ; 481(1): 17-32, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38032258

RESUMO

Aquaporin-0 (AQP0) is the main water channel in the mammalian lens and is involved in accommodation and maintaining lens transparency. AQP0 binds the Ca2+-sensing protein calmodulin (CaM) and this interaction is believed to gate its water permeability by closing the water-conducting pore. Here, we express recombinant and functional human AQP0 in Pichia pastoris and investigate how phosphorylation affects the interaction with CaM in vitro as well as the CaM-dependent water permeability of AQP0 in proteoliposomes. Using microscale thermophoresis and surface plasmon resonance technology we show that the introduction of the single phospho-mimicking mutations S229D and S235D in AQP0 reduces CaM binding. In contrast, CaM interacts with S231D with similar affinity as wild type, but in a different manner. Permeability studies of wild-type AQP0 showed that the water conductance was significantly reduced by CaM in a Ca2+-dependent manner, whereas AQP0 S229D, S231D and S235D were all locked in an open state, insensitive to CaM. We propose a model in which phosphorylation of AQP0 control CaM-mediated gating in two different ways (1) phosphorylation of S229 or S235 abolishes binding (the pore remains open) and (2) phosphorylation of S231 results in CaM binding without causing pore closure, the functional role of which remains to be elucidated. Our results suggest that site-dependent phosphorylation of AQP0 dynamically controls its CaM-mediated gating. Since the level of phosphorylation increases towards the lens inner cortex, AQP0 may become insensitive to CaM-dependent gating along this axis.


Assuntos
Aquaporinas , Calmodulina , Animais , Humanos , Aquaporinas/genética , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Cristalino/metabolismo , Mamíferos/metabolismo , Fosforilação , Água/metabolismo
15.
J Nutr Biochem ; 124: 109514, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37918450

RESUMO

Aquaporin 9 (AQP9) is an integral membrane protein that facilitates glycerol transport in hepatocytes and adipocytes. Glycerol is necessary as a substrate for gluconeogenesis in the physiological fasted state, suggesting that inhibiting AQP9 function may be beneficial for treating type 2 diabetes associated with fasting hyperglycemia. The n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are rich in fish oil and lower the risk of metabolic syndrome; however, the effects of EPA and DHA on AQP9 expression in obese and type 2 diabetes are unclear. The KK mouse is an animal model of obesity and type 2 diabetes because of the polymorphisms on leptin receptor gene, which results in a part of cause for obese and diabetic conditions. In this study, we determined the effect of fish oil-derived n-3 PUFA on AQP9 protein expression in the liver and white adipose tissue (WAT) of KK mice and mouse 3T3-L1 adipocytes. The expression of AQP9 protein in the liver, epididymal WAT, and inguinal WAT were markedly decreased following fish oil administration. We also demonstrated that n-3 PUFAs, such as DHA, and to a lesser extent EPA, downregulated AQP9 protein expression in 3T3-L1 adipocytes. Our results suggest that fish oil-derived n-3 PUFAs may regulate the protein expressions of AQP9 in glycerol metabolism-related organs in KK mice and 3T3-L1 adipocytes.


Assuntos
Aquaporinas , Diabetes Mellitus Tipo 2 , Ácidos Graxos Ômega-3 , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Células 3T3-L1 , Glicerol , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/farmacologia , Óleos de Peixe/metabolismo , Adipócitos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Fígado/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Obesidade/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Aquaporinas/farmacologia , Ácidos Graxos Insaturados/farmacologia , Tecido Adiposo Branco/metabolismo
16.
Zoolog Sci ; 40(6): 455-462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064372

RESUMO

Aquaporin (AQP) 7 and AQP9 are membrane channel proteins called aquaglyceroporins and are related to glucose and lipid metabolism. AQP7 is mainly expressed in white adipose tissue (WAT) and is involved in releasing glycerol into the bloodstream. AQP9 is the glycerol channel in the liver that supplies glycerol to the hepatic cells. In this study, we investigated the relationship between the expression of aquaglyceroporins and lifestyle-related diseases, such as obesity and fatty liver, using 22-week-old db/db mice. Body weight, WAT, and liver weight showed increases in db/db mice. The levels of liver lipids, plasma lipids, insulin, and leptin were also increased in db/db mice. Gene expression related to fatty acid and triglyceride synthesis in the liver was enhanced in db/db mice. In addition, gene and protein expression of gluconeogenesis-related enzymes was increased. Conversely, lipolysis-related gene expression in WAT was reduced. In the db/db mice, AQP9 expression in the liver was raised; however, AQP7 expression in WAT was reduced. These results suggest that in db/db mice, enhanced hepatic AQP9 expression increased the supply of glycerol to the liver and induced fatty liver and hyperglycemia. Additionally, reduced AQP7 expression in WAT is associated with excessive lipid accumulation in adipocytes. Aquaglyceroporins are essential molecules for glucose and lipid metabolism, and may be potential target molecules for the treatment of obesity and lifestyle-related diseases.


Assuntos
Aquagliceroporinas , Aquaporinas , Fígado Gorduroso , Camundongos , Animais , Glicerol/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Glucose/metabolismo , Lipídeos
17.
J Tradit Chin Med ; 43(6): 1160-1167, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37946478

RESUMO

OBJECTIVE: To investigate whether Hetong decoction (, HTT) alleviates constipation via regulating AQPs expression. METHODS: Constipation in rats was induced by loperamide, and rats were randomly assigned into model (saline), HHT-low (95 g/kg), HTT-medium (190 g/kg), HTT-high (380 g/kg) and positive control (mosapride) groups. Then the defecation function, the concentration of serum arginine vasopressin (AVP) and cyclic adenosine monophosphate (cAMP), and the expression of AQP3 and AQP8 in colon tissues were assessed. NCM460 colon cells with AQP3 and AQP8 knockdown or overexpression were exposed to serum from rats that received low or high dose of HTT, followed by detection of AQP3 and AQP8 expression. RESULTS: The model group showed lower fecal weight and water content, weaker intestinal transit, higher serum concentration of AVP and cAMP, increased proximal and distal AQP8 expression, increased proximal but decreased distal AQP3 expression. However, these trends were reversed in both the HTT group (low, medium and high dose) and the positive control group. In NCM460 cells, HTT dose-dependently stabilized AQP3 and AQP8 expression under AQP3/8 plasmid interference or overexpression. CONCLUSIONS: HTT relieves constipation in rats through regulating AQP3 and AQP8 expression.


Assuntos
Aquaporinas , Loperamida , Ratos , Animais , Loperamida/efeitos adversos , Loperamida/metabolismo , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Colo/metabolismo , Intestinos , AMP Cíclico/genética , AMP Cíclico/metabolismo
18.
PeerJ ; 11: e16403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025732

RESUMO

As small ectotherms, insects need to cope with the challenges of winter cold by regulating the water content through water transport. Aquaporins (AQPs) are key players to enhance the cold resistance by mediating essential homeostatic processes in many animals but remain poorly characterized in insects. Agriphila aeneociliella is a newly discovered winter wheat pest in China, and its early-stage larvae have strong tolerance to low temperature stress. Six AQP genes were identified, which belong to five AQP subfamilies (RPIP, Eglp, AQP12L, PRIP, DRIP). All of them contained six hydrophobic transmembrane helices (TMHs) and two relatively conservative Asparagine-Proline-Alanine motifs. The three-dimensional homology modeling showed that the six TMHs folded into an hourglass-like shape, and the imperceptible replace of four ar/R residues in contraction region had critical effects on changing the pore size of channels. Moreover, the transcript levels of AaAQP 1, 3, and 6 increased significantly with the treatment time below 0 °C. Combined with the results of pore radius variation, it is suggested that AaAQP1 and AaAQP3 may be considered to be the key anti-hypothermia proteins in A. aeneociliella by regulating rapid cell dehydration and allowing the influx of extracellular cold resistance molecules, thus avoiding death in winter.


Assuntos
Aquaporinas , Lepidópteros , Animais , Larva/genética , Lepidópteros/genética , Aquaporinas/genética , Água/metabolismo , Homeostase
19.
Reprod Fertil Dev ; 35(14): 669-675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37879294

RESUMO

CONTEXT: Aquaporin 7 (AQP7) is selectively expressed in decidualised endometrial stromal cells (ESCs) of mice surrounding the embryonic implantation sites. However, the roles of AQP7 and the underlying mechanism that regulates AQP7 expression in endometrial decidualisation after implantation are still unclear. AIMS: This study aimed to investigate the role of the PI3K-Akt pathway in regulating the expression of AQP7 in ESCs and decidualisation. METHODS: Primary ESCs of pregnant mice were isolated to establish in vitro decidualisation models. PI3K inhibitor LY294002 was added to the decidualisation models, then AQP7 expression, changes in decidualised ESC morphology and expression of decidualisation marker molecules were examined. KEY RESULTS: AQP7 knockdown reduced the proliferation and differentiation of ESCs with in vitro induced decidualisation. Furthermore, when the activity of PI3K was inhibited by LY294002, the expression of AQP7 in decidualised ESCs was decreased and both the proliferation and differentiation of ESCs were significantly reduced. CONCLUSIONS: This indicates that AQP7 is a key molecule involved in endometrial decidualisation and the expression of AQP7 is upregulated through activation of the PI3K-Akt pathways, which promotes the proliferation and differentiation of the ESCs, thus affecting occurrence of decidualisation. IMPLICATIONS: This study may provide a new biomarker for the diagnosis of infertility and a new drug target for the prevention and treatment of infertility.


Assuntos
Aquaporinas , Infertilidade , Gravidez , Feminino , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Endométrio/metabolismo , Células Estromais/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo
20.
ACS Synth Biol ; 12(10): 3041-3049, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37793076

RESUMO

Aquaporins provide a unique approach for imaging genetic activity in deep tissues by increasing the rate of cellular water diffusion, which generates a magnetic resonance contrast. However, distinguishing aquaporin signals from the tissue background is challenging because water diffusion is influenced by structural factors, such as cell size and packing density. Here, we developed a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on subtracting signals at two diffusion times can improve specificity by unambiguously isolating aquaporin signals from the tissue background. We further used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin and established a mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. The quantitative framework developed in this study will enable a broad range of applications in biomedical synthetic biology, requiring the use of aquaporins to noninvasively monitor the location and function of genetically engineered devices in live animals.


Assuntos
Aquaporinas , Imagem de Difusão por Ressonância Magnética , Animais , Genes Reporter , Imagem de Difusão por Ressonância Magnética/métodos , Método de Monte Carlo , Difusão , Água , Aquaporinas/genética , Imagem Molecular , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...